Основной принцип (технология) работы телевизора
Одним из главных устройств любого телевизора, обеспечивающим прием сигнала, является телевизионная антенна (ТА), причем главным параметром ее работы является правильное согласование выходного R активного вибратора с сопротивлением, присущим кабелю снижения (КС). Он необходим для того, чтобы передавать входящий импульс, принятый ТА и является коаксиальным кабелем высокой частоты, имеющим достаточный КПД (фидер).
Согласование необходимо для достижения более высокого КБВ (коэффициента бегущей волны) в самом кабеле снижения. Устройство согласования предназначено для преобразования R в величину, близкую по значению сопротивлению, которым обладает фидер.
Также ТА обязана иметь определенные значения по полосе пропускания, это является важным параметром, так как ее ширина напрямую определяет равномерность ее амплитудно-частотной характеристики (АЧХ).
Структурную схему обычного, черно-белого телевизора можно представить:
Сигнал, поступающий с антенны, попадает на входное избирательное устройство (ВИУ), которое выделяет тот телевизионный сигнал, требующийся в определенный момент. С учетом того, что его U достаточно мало, далее следует его усиление посредством высокочастотного усилителя (УВЧ).
После усиления он идет на частотный преобразователь (ПЧ), представляющий собой смеситель с гетеродином, точность настройки которого необходима для получения высококачественного изображения (четкости, отсутствия любых искажений по фазе и качеству звука). Плюс, правильная и четкая подстройка способствует сглаживанию имеющихся помех, поступающих от других ТВ-каналов.
По количеству колебательных контуров гетеродин полностью аналогичен ВИУ. После настройки сигнала в гетеродине, он идет на смеситель, куда также приходит и параметр от ВИУ.
Согласно принципу работы смесителя, который переносит принимаемую частоту на промежуточную, в нем происходит умножение частоты имеющегося изображения и частоты звука на частотную составляющую гетеродина.
В результате этого на выходе получаются колебания частоты изображения i, а также звука f (все они - промежуточные).
fПР = fГ – fС
Таким образом, на выходе ПЧ имеются промежуточная i изображения и звука, при этом первая должна быть на 6,5 МГц выше второй.
Независимо от того, какой канал настраивается, эти значения являются постоянной величиной и имеют следующие значения:
- i изображения = 38 МГц.
- f звука = 31,5 МгЦ.
Данные колебания хотя и являются высокочастотными, однако содержат меньшие f принятых сигналов. Если требуется точно его подстроить, в подобных ситуациях параметры гетеродина возможно регулировать посредством изменения С (емкости) в цепи колебательного контура.
Как правило, в современных моделях имеется блок АПЧГ, который автоматически подстраивает гетеродин.
Проходя через СК (селектор каналов телевизора), промежуточные частоты попадают в БУ, преобразующего промежуточную частоту получаемой картинки (УПЧИЗ).
После него усиленный импульс идет на детектор (ВД).
ВД осуществляет два основных предназначения:
- Выделение видеосигнала.
- Получение новой, 2-ой промежуточной частоты звуковой составляющей, которая представляет собой разницу между промежуточными частотными составляющими картинки и звуковой составляющей и равна 6,5 МГц.
Таким образом, ВД является ничем иным, как ПЧ.
После ВД сигнал видео идет на усилитель (УВС), а после - на модулятор самого кинескопа (МК).
Полученное значение(6,5 МГц) идет на УПЧЗ, после чего она передается на детектор (ЧД), выделяющий непосредственно сам звук, после чего отправляет его на УЧЗ и впоследствии – на громкоговоритель (ГР).
Синхронизирующий сигнал выделяется из УВС посредством блока синхронизации (БС) и, не претерпевая видоизменений, проходит все имеющиеся блоки.
В БС происходит его разделение на строчные и также кадровые импульсы при помощи блоков, осуществляющих развертку (БКР, БСР), после чего они идут на ОС.
После БС все импульсы, получаемые посредством БКР и БСР идут на выпрямитель высокого U (ВВ), необходимый для запитки одного из анодов кинескопа (К). Изначально напряжение на схему U подается из блока питания (БП).
Как уже было сказано, после УВС строчные, а также кадровые импульсы составляют полный готовый видеосигнал. Благодаря этому на экране К электронный луч двигается синхронно и с той же фазой, что и луч, который передается с трубки телецентра.
Видеосигнал содержит импульсы, гасящие луч в К, требуемые на обратный код указанных разверток (кадровых, строчных).
Чтобы выделить непосредственно синхроимпульсы, имеется селектор (ССИ), который находится всегда в запертом состоянии и переходит в открытое состояние из-за импульсов синхронизации. Так как амплитуда синхроимпульсов всегда выше амплитуды сигнала изображения для самых черных элементов, и происходит их выделение. При этом их значение будет соответствовать понятию «чернее черного».
Также ССИ обладает функцией разделения на строчные и кадровые синхроимпульсы посредством измерения разницы по длительности между строчными и кадровыми импульсами (длительность последних выше).
Таким образом, посредством процедуры дифференцирования получают строчные синхроимпульсы, а при помощи интегрирования – кадровые синхроимпульсы.
После ССИ кадровые синхроимпульсы идут на ГКР (генератор кадровой развертки), где на выходном каскаде из отклоняющих катушек получается напряжение пилообразной формы, что и продуцирует линейный ток I пилообразной формы.
Отклоняющие катушки ОС, обеспечивающие кадровку, соединяются с ГКР при помощи выходного кадрового трансформатора (ВТК), обеспечивающего полное согласование R каскада (лампового) с R отклоняющих катушек. Как вариант, подсоединение может быть выполнено полупроводниками ГКР, так как их R значительно меньше.
Посредством ОС, установленной на горловину трубки кинескопа (К), происходит управление электронным лучом, при этом воздействие на него осуществляется с помощью магнитного поля соленоидов ОС.
Строчные синхроимпульсы проходят на устройство, обеспечивающее автоматическую частотную и фазовую подстройку самой строчной развертки (АПЧиФ). Там же происходит сравнение по длительности строчных синхроимпульсов и импульсов обратного хода самой строчной развертки, которые приходят с ГСР.
Если длительность строчных синхроимпульсов и импульсов обратного хода с ГСР совпадает, на выходе АПЧиФ U будет равняться нулю.
Если по длительности наблюдаются отклонения в ту или иную сторону, на выходе получается U, пропорциональное величине данного отклонения. При этом, полярность напряжения будет зависеть от времени поступления импульсов с ССИ и ГСР.
За счет имеющейся инерционности АПЧиФ, импульсные помехи, также попадающие вместе с входящим сигналом, не оказывают никакого влияния на его работу.
Выходное напряжение с АПЧиФ идет на ГСР, который в свою очередь меняет частотную составляющую напряжения развертки.
Упрощенная электрическая принципиальная (структурная) схема телевизора
Согласно представленной в предыдущем подпункте структурной схеме, становится понятным расположение и взаимодействие отдельных блоков между собой.
С учетом развития технологий, принципы построения схем и работы значительно видоизменились, так как с течением времени телевизоры с черно-белым экраном сменились вначале цветными, а затем и ЖК и плазменными.
В связи с этим, в классическую структурную схему в связи с переходом на цветное вещание были добавлены новые элементы, такие как:
- БЦ – блок цветности.
- БДУ – блок, обеспечивающий управление на расстоянии.
- БКВУ – блок, обеспечивающий коммутацию всех внешних устройств.
Что касается современных, ЖК и плазменных панелей, количество различных блоков в них значительно больше.
Устройство, принципы работы черно-белых моделей (аналоговых)
Все черно-белые телевизоры, относящиеся как к ламповым, так и полупроводниковым моделям, имеют схожую структурную компоновку.
Как видно из представленного рисунка, добавлены следующие устройства:
- Метровый селектор каналов (СКМ).
- Дециметровый селектор каналов (СКД).
- Усилитель промежуточной f изображения (УПЧИ).
Сигналы звука и картинки, усиленные и преобразованные в блоке, переключающем каналы телевизора (ПТК), поступают в УПЧИ.
С учетом того, что частота колебаний гетеродина отличается по значению от f поступающего импульса (выше), как уже указывалось, разница между промежуточной i картинки и звука составляет 6, 5 МГц.
Для получения изображения самого высшего качества, требуется точно настроить гетеродин на входе на нужную частоту, которая обеспечивает четкость видеоизображения и чистоту звукового сигнала, а также отсутствие искажений по фазе.
Все подобные телевизоры имеют функцию как ручной, так и автоматической подстройки
Ручная настройка помогает обеспечить правильную подстройку при приеме тестовой таблицы.
Автоматическая настройка крайне необходимо при различных коммутациях, таких как включение и прогрев самого устройства (меняется частотная составляющая гетеродина), скачка напряжения в электросети, внешних помехах или переключении требуемых каналов.
АПЧГ (автоматическая частотная подстройка гетеродина)
АПЧГ выполняется с ОС и содержит в себе различитель и элемент управления.
Различитель представляет собой не что иное, как дискриминатор фаз, где на вход идет U промежуточной частоты. Таким образом, если телевизор подстроен точно, U на выходе будет равняться нулю.
При имеющемся отклонении частоты гетеродина (от 38 МГц, номинальной), на выходе появляется управляющее U расстройки.
U расстройки идет на устройство, называемое варикапом, который соединено с контуром гетеродина в ПТК. Таким образом, данное U меняет f гетеродина ту сторону, которая противоположна расстройке.
Но полностью устранить имеющуюся расстройку АПЧГ не в состоянии, потому в наличии всегда имеется ее остаточные значения. При этом, чем выше коэффициент автоподстройки, тем меньше будет значение остаточной расстройки.
Зачастую, стандартным решением в устройствах подобного типа является использование АПЧГ по промежуточной f и УПТ (усилителем постоянного I). При такой схеме остаточная расстройка составляет порядка 50 кГц (изначально присутствует в 1,2 МГЦ).
Также многие модели первого поколения комплектуются следующими блоками:
- Автоматической регулировкой усиления (АРУ), обеспечивающим постоянное поддержание каких-либо значений.
- Автоматической постройкой по f и фазе (АПЧиФ).
В данных моделях за счет АПЧиФ в ГСР предусмотрена частотная и фазовая автосинхронизация с подобными параметрами синхроимпульсов от телецентра. Также обеспечивается надежная синхронизация строчной развертки сигнала на входе, если он ослаблен или присутствуют импульсные помехи, что актуально для моделей с большой диагональю экрана.
Далее, на выходе ФД (фазового детектора), который в обязательном порядке имеется в подобных моделях, будет присутствовать постоянное U, при этом его полярность и значение будут находиться в прямо пропорциональной зависимости от угла сдвига фаз импульсов.
Если данный угол будет нулевым, напряжение на выходе ФД также будет иметь нулевое значение. При других его величинах, данное U идет на управляющую сетку ЗРГ (задающий релаксационный генератор) через фильтр низких частот (НЧФ).
Если напряжение начинает меняться, происходят изменения также и в частоте собственных колебаний ЗРГ. Таким образом, данные колебаний затухнут лишь тогда, когда их расхождение с углом сдвига фаз и f синхроимпульсов также сведется к нулю.
В зависимости от схемы построения, АПЧиФ не всегда способен компенсировать все возможные отклонения f ЗРГ. Во избежание подобной проблемы в таких телевизорах с простой схемой АПЧиФ устанавливается ручная регулировка.
Что касается моделей первого класса, за счет правильного выбора схемы АПЧиФ с широким диапазоном полосы, захватывающей f ЗРГ, отпадает необходимость в установке возможности ручной подстройки. Это достигается за счет контроллера, фазового дискриминатора, который запоминает последнюю величину пикового U разностной f.
Устройство, принципы работы цветных телевизоров (аналоговых)
Данные модели являются аналоговыми и выполнены на полупроводниках.
В отличие от предыдущего изображения, в составе цветного телевизора на полупроводниках добавлены такие новые составляющие:
- Плата дистанционного управления (ДУ).
- Видеопроцессор, укомплектованный декодером цветности.
- Декодер, обеспечивающий телетекст.
- Плеер DVD.Плеер-USB.
Схема, устройство, принципы работы ЖК и плазменных панелей
В данных моделях схема значительно изменена, так как в отличие от аналогового, сигнал обрабатывается цифровым способом.
Основные блоки, присущие подобным устройствам, следующие:
- Инвертор. Благодаря ему обеспечивается напряжение, необходимое для запитки светодиодов или ламп подсветки.
- Память, в которой хранятся данные о настройках – ПЗУ.
- Оперативная память, которая принимает непосредственное участие в их обработке – ОЗУ.
Таким образом, принцип действия телевизора во всех моделях остается одним и тем же, однако за счет развития современных технологий составляющие элементы претерпели значительные изменения.