ESpec - мир электроники для профессионалов


Главная » Прочая электроника » Просмотр статьи

Триггеры в электронике - что это такое и где используется

Современную электронику и технику, в особенности компьютерную, невозможно представить без таких компонентов вычислительных систем, как регистры, счетчики, процессоры, ОЗУ. При всем их разнообразии, несмотря на стремительный технический прогресс, всех эти компоненты как и много лет назад основываются на классе очень простых по нынешним меркам электронных устройств - триггеров.

Что такое триггер

Чтобы узнать, что такое триггер и разобраться во всём, что касается этих устройств, нужно начать с понятия. Слово "Триггер" произошло от английского "trigger" и обозначает цифровое устройство, который имеет только два состояния – 0 и 1. Переход от одного значения к другому происходит с огромной скоростью, и временем этих переходов обычно пренебрегают.

Триггер – это основной элемент системы большинства запоминающих устройств. Они могут быть использованы для хранения информации. Но объём памяти крайне мал, так что там можно держать разве что коды, биты и сигналы.

Память свою триггеры могут сохранять только при наличии питающего напряжения. Из этого следует, что их всё-таки стоит относить к оперативной памяти. Перезапустить питающее напряжение – и триггер будет в одном из двух состояний. То есть иметь или логический ноль, или логическую единицу, и состояние это будет выбрано случайно. Исходя из этой особенности, при проектировании схемы нужно заранее обозначить, как триггер будет возвращаться в стартовое состояние.

Схема, состоящая из двух логических состояний «И-НЕ» или «ИЛИ-НЕ», которые охвачены обратной положительной связью, лежит в основе построения всех триггеров. При подключении схема может пребывать только в одном из двух устойчивых состояний. Если не будет никаких сигналов, то триггер будет сохранять именно заданное состояние и не менять его, пока будет питание.

Триггерные ячейки

Схема имеет два инверсионных входа: Сброс – R (Reset) и установка S (Set). Так же имеются два выхода: Q – прямой и –Q – инверсный. Чтобы триггерная ячейка работала правильно, должно выполниться одно правило. На выходы ячейки не могут в один момент поступить отрицательные импульсы.

На выход –R поступает импульс при одном сигнале на вход –S. Выход –Q тогда оказывается в состоянии «1», выход Q будет в состоянии «0». Обратная связь создаёт переход сигнала «0» на второй вход на нижнем элементе. Когда поступление сигнала на –R прекратится, состояние сигналов на выходах будет тем же – Q (0), –Q (1). Таким образом, схема будет находиться в состоянии стабильности, потому что при подаче импульса на –R, состояние на выходе не изменится.

Это же состояние будет у системы, если на – R подаётся «1», и на вход – S – «0». Тогда на выходе Q будет «1», на -Q — «0». Система будет стабильна, вне зависимости от подачи импульсов на входе – S.

Одновременно подав на каждый вход сигналы, на каждом выходе в течение их действия и будет по одному сигналу. Как только подача импульсов прекратится, выходы сами перейдут в одно из двух возможных состояний. Это произойдёт случайно. Триггерная ячейка при включении выберет себе одно из двух устойчивых положений. Так же случайно.

Входы и виды триггеров

В зависимости от структуры и выполняемых им функций можно определить число входов триггера.

По параметру записи информации триггеры можно разделить на:

  • Синхронные – запись информации производится только при дополнительном, синхронизирующем сигнале, который, по сути, запускает триггер.
  • Асинхронные – запись информации зависит от информационных сигналов, подающихся на вход триггера, и происходит она непрерывно.

В цифровой схемотехнике обычно можно найти следующие обозначения входов триггера:

  • S – раздельный вход, устанавливающий триггер на единицу (на Q единица)
  • Q – прямой выход
  • R – раздельный выход, устанавливающий триггер на ноль (на Q ноль)
  • С – вход синхронизации
  • D – вход информационный (на него подаётся информация, которая будет занесена на триггер)
  • T – счётный вход

Что касается функций, то в этом плане триггеры можно разделить на:

  • RS-триггеры;
  • JK-триггеры;
  • D-триггеры;
  • Т-триггеры.

RS- триггер

Это самый простой тип триггеров. На его основе создаются и другие типы. Возможные логические элементы в его построении – это 2И-НЕ (инверсионный вход) и 2ИЛИ-НЕ (прямые входы).

Из-за низкой помехоустойчивости такие триггеры почти не используются самостоятельно. Их можно применить, например, для устранения влияния дребезжащих контактов, которое возникает при коммутации механических переключателей. Тогда требуется тумблер с тремя выходами, один из которых подключается по очереди к остальным двум. Чтобы создать RS-триггер используется D-триггер с замкнутыми на состоянии «ноль» входы С и D.

Первый отрицательный сигнал на входе –R переводит в состояние «0». Первый отрицательный сигнал на входе –S переводит в состояние «1». Другие сигналы, возникшие из-за дребезга контактов, не могут оказать влияние на триггер. При таком подключении переключателя верхнее положение будет равно «1» на выходе, нижнее – «0».

RS-триггер сам по себе асинхронный, однако, иногда возникают случаи, когда нужно сохранить информацию. Тогда на помощь приходит синхронизируемый RS-триггер, который в этом случае должен состоять из обычного RS-триггера и схемы управления.

При этой схеме, импульсы, поступающие на Х1 и Х2 не имеют никакого значения, пока на входе С сохраняет значение «0». В этот момент RS-триггер находится в режиме хранения информации. Как только значение C становится равно «1» триггер запускается, начинается запись.

D-триггер

Это триггеры задержки. Используются они для создания регистров сдвига и хранения. Это одна из важнейших частей всех микропроцессоров.

У такого триггера два выхода – информационный и синхронизирующий. Триггер стабилен, когда состояние С находится на «ноль». При этом сигнал на выходе не будет зависеть от сигналов, которые поступают на информационный вход. Когда значение С изменяется на «1» на прямом выходе, тогда информация будет такой же, как и на триггере D.

JK-триггер

По своему принципу действия он очень похож на RS- триггеры. Но в отличие от него, у JK-триггеров нет проблем с неопределённостью, когда на вход одновременно поступают две «единицы». При возникновении подобной ситуации JK-триггер становится счётным триггером. Тогда при поступлении на вход сигналов со значением «1» триггер меняет своё состояние на противоположное.

Эти устройства очень универсальны. С одной стороны, они прекрасно находят своё применение в цифровых устройствах – счётчиках, регистрах, делителях частоты и т.д. С другой стороны при соединении определённых выводов можно получить вообще любой нужный вид триггера.

Т-триггер

У этих триггеров есть и другое название – счётные. На их основе создаёт двоичные счётчики и делители частот. У этих триггеров вход только один. На изображениях – асинхронный (1) и синхронный (2) Т-триггеры.

Импульс поступает на этот вход, состояние его меняется не противоположное. После поступления следующего импульса состояние становится исходным.

Триггер переключается в тот момент, когда на его вход поступается синхроимпульс. Тогда частота импульсов на выходе оказывается в 2 раза меньше начальной. Таким образом, один счётный триггер уменьшает частоту импульса двукратно. А два триггера, что были подключены последовательно, логично уменьшат частоту уже в 4 раза.

Почему эти триггеры называют ещё и делителями частот хорошо заметно по временным схемам:

Практическое использование триггера

Об одном из способов использования триггеров уже было сказано выше. Это устранение дребезга контактов. Тогда использовался RS-триггер. Но это далеко не все области, в которых могут применяться эти устройства.

Создание сигнала

Триггеры часто используют, чтобы создать сигнал. Его длительность должна соответствовать длительности какой-нибудь операции в схеме. В этом случае триггер будет служить сигналом, который разрешает начать процесс. А так же он информирует другие устройства, что процесс запущен. В таких случаях триггер называется «флаг процесса».

В момент прихода сигнала в начало процесса триггер переходит в состояние «единицы». Это оповещает о том, что процесс запустился. Когда происходит стоп-сигнал, триггер получает значение «ноль» и процесс завершается.

Как самый простой вариант можно использовать –S и –R входы. Однако, тут всегда будет возможность получить неопределённость, когда сигналы будут на обоих входах. Избежать этой ситуации можно легко. Нужно взять пары входов –R и С и С и –S. Тогда, используя –R и С, на D нужно подать «1». С и –S в использовании требуют «ноль» на D.

В чём удобство такого способа? В том, что сигналы «Стоп» и «Старт» используются не только как уровни, но и фронт сигнала.

Синхронизация сигналов

Своё применение триггеры так же нашли в области синхронизации сигналов. С помощью устройства можно избавляться от ненужных коротких импульсов. Они возникают на выходе схемы, если вводные сигналы меняют одновременно. Тогда для синхронизации нужен синхросигнал. Он находится в сопровождении у информационных входных сигналов и задержан на время задержки относительно момента, когда изменение входных сигналов только началось. Когда синхросигнал подаётся на вход С, а выходной – на D (у этого же триггера), то сигнал на выходе будет без лишних импульсов.

Разработка цифровых схем так же не обходится без триггеров. Работа этих схем синхронизируется с общим тактовым генератором. И не редко появляется проблема с синхронизацией внешнего сигнала, который поступает на схему и самой схемой. То есть, нужно обеспечить изменение внешнего сигнала, чтобы в результате он менялся с тактами генератора. Внешний сигнал по отношению к тактовому сигналу в схеме – асинхронный. Так что, если совсем простыми словами, сигнал из асинхронного должен стать синхронным для всей схемы.

Эту задачу и решает триггер.

Внешний сигнал создаёт разрешение или запрет на прохождение сигнала, который генерируется тактовым генератором. Если речь идёт о RC-триггере, то нужно просто отключать и включать генератор вовремя. Этот способ кажется простейшим. Однако, это заблуждение. Для начала, выключить и выключить генератор не получится в один момент – ему нужно время и качество сигнала в это время будет далеко от идеала.

Например, генераторы из кварца. Их вовсе не рекомендуется часто останавливать и запускать. После возобновления генератор будет формировать сигнал с задержкой до 5 периодов тактовой частоты. И задержка при каждом включении будет разной.

Также возможность прекращать работу генератора иногда вовсе не существует. Например, если от его работы зависит работа всей схемы.

Для упрощения считают, что тактовый генератор работает не прекращая. Внешний управляющий сигнал тогда будет отвечать за прохождение или блокировку импульсов, которые были сгенерированы.

Самое лёгкое решение – создать процесс запрета и пропуска импульсов, которые генератор создаёт, используя при этом логический элемент 2И. Правда, тут очень большая вероятность, что на выход будут приходить короткие импульсы или с не полной длительностью. Такие сигналы могут оказать плохое влияние на систему в целом, создав неопределённость в функционировании.

В этом случае, синхронизирующий триггер на выходе пропускающего элемента 2И обеспечит только нужные импульсы. То есть те, которые имеют полную длительность. Когда через триггер проходит разрешающий сигнал, он синхронизируется с тактовым сигналом. И на выходе будет целое число тактовых импульсов и целое число периодов, которое задаётся генератором.

Создание задержки

Триггеры так же можно использовать для задержки цифровых сигналов. В этом случае несколько триггеров с общим тактовым сигналом С нужно соединить в цепь. Соединение должно быть последовательным. При включении комбинации схем смогут одновременно обработать несколько состояний одного и того же сигнала.


Информация

Разместил(а): Administrator
Просмотров статьи: 334

Рейтинг статьи

ужасно    1     2     3     4     5    отлично
Текущий рейтинг:  Рейтинг: 5, проголосовало: 1 Рейтинг: 5, проголосовало: 1 Рейтинг: 5, проголосовало: 1 Рейтинг: 5, проголосовало: 1 Рейтинг: 5, проголосовало: 1 Рейтинг: 5, проголосовало: 1 Рейтинг: 5, проголосовало: 1 Рейтинг: 5, проголосовало: 1 Рейтинг: 5, проголосовало: 1 Рейтинг: 5, проголосовало: 1 

Комментарии Комментарии (0) Версия для печати Версия для печати

Другие публикации раздела

Эффективное управление сервисной компанией
Ультразвук для очистки печатных плат
Жидкокристаллические индикаторы
Вакуумно-люминесцентные индикаторы
Сокращения и условные обозначения, применяемые в электронике и электротехнике

Интересное от ESpec



liveinternet.ru RadioTOP Rambler's Top100 Рейтинг@Mail.ru